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Recently efforts have been made to quantify the difficulties inherent in numerically solving 
linear Fredholm integral equations of the first kind (J. Integral Equations, to appear.). In 
particular, the classical quadrature approach, collocation methods, and Galerkin schemes that 
make use of various orthonormal basis functions have been shown to lead to matrices with 
high condition numbers. In fact, it has been possible to obtain explicit lower bounds on these 
condition numbers as a function of the smoothness of the kernel, essentially independent of 
the choice of orthonormal basis. These bounds all approach infinity as the number of basis 
functions increases. In this article we present a numerical study of condition numbers arising 
from collocation and Galerkin methods with step-function and Legendre polynomial bases. 
The condition number for each kernel and basis set studied is exhibited as a function of the 
number of basis functions used. The effect that these ill-conditioned matrices have on the 
accuracy of solutions is demonstrated computationally. The information obtained gives an 
indication of the efficacy-and the dangers-of the collocation and Galerkin schemes in prac- 
tical situations. 

1. INTRODUCTION 

Linear Fredholm integral equations of the first kind arise quite often in 
applications. Many experimental techniques give rise naturally to such equations, and 
the subsequent attempt to interpret the experiment leads to a need to solve the 
equation. We shall examine some of the inherent difficulties involved. 

* This work was performed under the auspices of the U.S. Department of Energy. 

465 
002 l-999 l/83 $3.00 

Copyright 8 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



466 ALLEN,BoLAND,AND WING 

Such equations have the form 

g(x) = ,fb wt Y) f(r) dY9 (1.1) 0 

where the kernel K(x, y) and the function g(x) are assumed known and the problem is 
to findf(y). As an example of a physical situation in which an equation of this type 
arises, consider the following experiment: Suppose a signal in the form of a beam of 
particles is passed through a slab of absorbing but nonscattering material. Assume 
that the known absorption cross section, o(E), of the slab depends only on the 
particle energy. The output of the experiment is a single number provided by a 
detector that measures the total number of particles impinging on it. The problem is 
to determine the energy spectrum of the incident particle beam. Let x denote the 
thickness of the slab. If f(E) is the energy spectrum and g(x) the detector 
measurement for thickness x, the problem can be formulated mathematically as 

g(x) = ,:““” e -‘“f(E) dE. 
llli” 

(l-2) 

It is physically clear that a single experiment cannot determine the energy spectrum 
f(E). If, however, the experiment is repeated for various thickness x, then Eq. (1.2) is 
simply Eq. (1.1) with a = Emin, b = E,,, , K(x, y) = e-“lcYtX, where we have replaced 
E by Y. 

There are many difftculties inherent in solving Eq. (1.1). Let Eq. (1.1) be written in 
the form 

We see that what is desired is an operator K- ’ such thatf= Ic- ‘g. First, K may fail 
to have an inverse unless suitable restrictions are placed on g(x). If K-' does exist, it 
is an unbounded operator. This means that small errors in the data g(x) may induce 
large errors in the solutions. 

It is this last point that we discuss. We examine two classical methods for solving 
(1. I), the collocation and Galerkin procedures, using both step-function and 
polynomial bases. In Section II, we show that both of these methods lead to matrix 
equations of the form 

where the vector f is directly related to f(x) and the vector ,$ to g(x). In Section III, 
we define the condition number of the matrix & which gives us a measure of the 
sensitivity of the solution j? to errors in g. (The larger the condition number, the 
greater the sensitivity.) In Section IV, we tabulate this condition number for various 
kerneIs and bases as a function of N, the number of basis functions used. The effect 
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that these ill-conditioned matrices have on the accuracy of solutions of (1.1) is 
demonstrated computationally in Section V. Our results are summarized in Section 
VI. 

Motivation for this study has been provided in part by some new results on lower 
bounds for condition numbers of these matrices [I]. More specifically, it has been 
demonstrated there that the smoother the kernel K(x, y) the more rapidly does the 
condition number grow as a function of the order of the matrix b. Although the fact 
that smooth kernels lead to ill-conditioning of the corresponding matrices has long 
been observed, these observations have not previously been put in quantitative terms. 
We feel that the actual numerical calculation of the condition numbers for various 
problems provides valuable information concerning the usefulness of the theory 
developed in [ 1 ] and gives an indication of the efficacy of Galerkin and collocation 
methods in practical situations. Our results suggest that the theory may indeed help 
to predict the success or failure of these devices in any given problem. The 
computations reveal that for certain bases the condition number bounds are 
remarkably good. 

II. THE GALERKIN AND COLLOCATION PROCEDURES 

In this section we describe the Galerkin and collocation methods for approximating 
the solution to the integral equation 

&T(X) = j” J?x, Y) f(Y) dY, (2.1) 
a 

where a and b are finite and the kernel K(x, y) is in L, on the square a < x, y < 6. We 
assume the function g(x) is given either analytically or as discrete data; in the latter 
case, it may be necessary to extend its definition. 

In the Galerkin method we begin by selecting two orthonormal basis sets, (Si} and 
{vi}, and then approximatingf(y) and g(x) as truncated series in these sets 

(2.2a) 

N 

g(x) - K- gi6,(x). 
,T, 

(2.2b) 

Substituting Eq. (2.2) into Eq. (2.1) and making use of the orthonormality of the 6, 
gives 

N 
gi = G l;Jb @itx) 

I 
lb K(x3 Y) PjCY) dY 

I 
ldx 

j=l (1 (I 

= 5 (@iv KPj>&, 

P-3) 
i = 1, 2 ,..., N. 

j=l 

581J49/3-a 
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Now define the vectors 

ALLEN, BOLAND, AND WING 

and the N x N matrix I? by 

K = (Kij) = ((si 9 KPj))* (2.4) 

Equation (2.3) becomes 

Because g(x) is known, the components of g can be obtained from 

gi = (g, #i) = J eb g(x) 6i(x) kg i = l,..., N, 
ll 

(2.6) 

and the system of Eq. (2.5) solved forE The solutionf(x) can then be recovered from 
Eq. (2.2a). 

It should be mentioned that the result described may be modified quite easily to 
accommodate the case of bases (Si) and {pi} which are not orthonormal, a situation 
frequently arising in practice. The theory developed in [ 11, however, relies on the 
assumption of orthonormality in both Galerkin and collocation schemes; therefore we 
confine our investigation throughout this article to such cases. 

Although the collocation method can be viewed as a Galerkin method (see [ 1 I), we 
use the standard approach. Select an orthonormal set {p,} and again expandf(y) in 
the truncated series 

f(Y) G 5 f/P,(V). (2.7) 
j=l 

Substitute this expression for&) into Eq. (2.1) and evaluate the resulting equation at 
x = xi, i = 1,2 ,..., N, to obtain 

dxl)= $J &JbK(xi9Y)(Di(Y)dY9 i = 1, 2 ,..., N. 
j=1 a 

Defining the vectors 
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and the matrix 

g = tKlj) = ( Jb K(xi 9 Y) Vj(Y) @ 9 (I ) W-9 

we obtain the equation 

Ii??= g. (2.9) 

Solving Eq. (2.9) for fwe recoverf(x) from the expansion Eq. (2.7). 

III. THE EFFECT OF ERRORS IN THE DATA 

Both of the methods discussed in Section II lead to the problem of solving linear 
algebraic systems of the form 

@= f, (3.1) 

where k is an n x n matrix and j: 6 are n-vectors. In this section we examine the 
condition number of the matrix Z? in an attempt to quantify how sensitive the solution 
p of Eq. (3.1) is to small errors in the data g. In what follows, we assume that k is 
nonsingular. 

Suppose i is subject to an error St, where 62 is a vector of small norm. The 
corresponding vector p+ Sf then satisfies 

X(3+ 63) = i + sg. (3-V 

It may be shown (see [2]) that 

(3.3) 

Here I( ... (I denotes any acceptable norm. The condition number of d is defined by 

cond(k) = llgll s lI&‘Il. (3.4) 

From Eq. (3.3) it is clear that cond(&) provides a bound on the relative error infdue 
to a given relative error in 2. Note that equality can actually hold in Eq. (3.3). The 
matrix k = i, the identity matrix, provides a trivial example. If k also contains 
errors, Eq. (3.3) can be modified. We do not discuss this case. 

The value of cond(k) depends on the vector norm being used. If one uses the 
Euclidean vector norm, for example, the corresponding induced matrix norm is 
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where p(k’b) is the spectral radius or largest eigenvalue of R’R. In this norm 

cond(@ = ]lkl] ]I~-‘]] =6,/u,, 

where 

01= &@-w, CT, = l/\/p((K?)T (K-1)). 

(Note (I,, is also the smallest eigenvalue of &‘k.) It can be shown that if any norm 
other than the Euclidean norm is used, the value of cond(Z?) is at least as great as 
~I/~,. 

IV. NUMERICAL CALCULATION OF SOME CONDITION NUMBERS 

In this section we tabulate the condition numbers of the J? matrix for both the 
Galerkin method, Eq. (2.4), and the collocation method, Eq. (2.8), for three different 
kernels K(x, y), and two different sets of basis functions. Our study is not intended to 
be comprehensive but rather illustrative. 

The kernels used are 

(1) K(x, y) = e-a’x--y’, -1 <x,y< 1, a=o.o01, 0.1, 1.0, 10.0, 
(2) K(x,y)=]x-JJ]~,-1<x,yg1,/3=2.0,2.001,2.1, 2.5,and 

(3) K(x,y).=(l -x)(1 +y>, -1 <Y<X< 1, 
= (1 -y)(l +x), -1 <x<y< 1. 

Note that in cases 1 and 3, K is continuous but has a discontinuous first derivative. 
In case 2, K is smoother. The second derivative is continuous but not the third, 
except for the value /I = 2.0 for which K possesses all derivatives. We expect these 
differences in smoothness to be reflected by the condition numbers. 

The bases studied are (a) piecewise constant functions defined by 

rPiCx) = dV9 
-1 + W- 1) 

N 
&x<--1+;, i = 1, 2,..., N 

= 0, elsewhere, 

and (b) Legendre polynomials. 
Step functions are an especially convenient basis set for our numerical 

computations because the integrals in Eqs. (2.4), (2.6), and (2.8) need only be 
evaluated over subintervals of [ - 1, 1 ] of length 2/N. The Legendre polynomials are a 
different matter, however, and can be a source of numerical difficulty, particularly for 
large orders. 

In the numerical results to follow, all integrals were evaluated using adaptive 
Newton-Cotes quadrature routines. All matrix condition numbers were estimated 
using the LINPACK routine SGECO [3]. Programs were written in Fortran and the 
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TABLE I 

K = exp[-a IX --y/l Galerkin Step Functions 

\ 

a 0.001 0.1 1.0 10.0 
N 

10 2.7(5) 2.6(3) 1.7(2) 3.9(O) 
20 1.1(6) 1.1(4) 7.2(2) 1.3(O) 
30 2.6(6) 2.5(4) 1.7(3) 2.7(l) 
40 4.7(6) 4.5(4) 3.0(3) 4.q 1) 
50 7.4(6) 7.0(4) 4.7(3) 7.5( 1) 

CW 2374N2.06 22.6N’.06 1.5N’.” O.OSN’.” 

L cN1.' cN'.' CN’.5 cN1" 

computations carried out on the CDC 7600 and Gay-1 computers at Los Alamos 
National Laboratory. 

To gain more understanding about the behavior of the condition number as a 
function of N, the order of the matrix k, we tabulated cond(R) for a range of N 
values and then fitted the results to the function cond(R) = CNy in the sense of least 
squares. This functional form is suggested by the theory [ 11. This fit is indicated in 
many of the tables. In some instances it is omitted because it seemed relatively 
meaningless, usually as a result of too few data points or very large condition 

TABLE II 

K = exp [ --a ( x - y I] Collocation Step Functions 

20 7.7(5) 7.3(3) 4.9(2) 8.6(O) 
40 3.1(6) 3.0(4) 2.0(3) 3.2(l) 
60 7.1(6) 6.8(4) 4.5(3) 7.2( 1) 
80 1.3(7) 1.2(5) 8.0(3) 1.3(2) 

100 2.0(7) 1.9(5) 1.3(4) 2.0(2) 

CW 1738N2.” 1 6NZ.0’ l.lN2.03 0.03N’.89 

L CN- CN’.J cN'.' cN'.~ 
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TABLE III 

K = exp[ --a ( x - y I] Galerkin L.egendre Polynomial 

\ 

2 2.5(3) 2.5(I) 2.5(O) 1.1(O) 
4 2.1(4) 2.0(2) 1*5(O) 1.5(O) 
6 7.2(4) 6.9(2) 4.8( 1) 2.5(O) 
8 1.8(5) 1.8(3) 1.2(2) 4.2(O) 

10 4.0(5) 3.8(3) 2.6(2) 7.2(O) 

CW Not meaningful 

L cN'.' CN1.J cN'.' CN’.’ 

numbers. We also indicate by the letter L in each table the lower bound predicted by 
that theory: 

L=cW, 

where c is a generic constant usually dependent upon y. 
The different ranges of N values in Tables I-X were dictated by computational 

expense. In the tables the notation p(q) means p X 104. A single asterisk (*) means 
that the calculated condition number was 0(1016), a magnitude we felt to be 
unreliable because of the limitations of machine arithmetic. A double asterisk (**) 

TABLE IV 

K(x, y) = exp( ---a Ix - yI 1 Collocation Legendre Polynomials 

10 4.8(O) 
20 8.5(9) 
30 1.2(13) 
40 * 
50 * 

L cN'.' 

0.1 1.0 10.0 

4.5(4) 2.9(3) 1.1(2) 
8.0(7) 5.0(6) 1.2(5) 
l.l(ll) 7.0(9) 1.4(8) 
1.5(14) 9.0( 12) 1.7(11) 

* * 2.1(14) 

Not meaningful 

CN’.5 CN’.’ cN’.’ 
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TABLE V 

K=lx-ylB Galerkin Step Functions 

2.0 2.001 2.1 2.5 

10 * 1.5(6) 1.8(4) 6.4(3) 
20 * 1.3(7) 1.7(5) 1.1(5) 
30 * 4.7(7) 6.5(5) 5.0(5) 
40 * 1.2(B) 1.6(6) 1.4(6) 
50 * 2.3(B) 3.4(6) 3.3(6) 

CNY - 1058N’.” 10.3N’- 0.9N’.‘” 

L CC cN'.OO1 CN'. ' cN'.~ 
y arbitrary 

indicates a mathematically singular matrix. In the Galerkin method the same basis set 
was chosen for both thef(y) and g(x) expansions. In collocation the x;s were equally 
spaced. In the tables, the principal entries are the condition numbers corresponding to 
the parameters indicated. The remaining entries are self-explanatory. 

A careful examination of the tables shows that the smoother the kernel K(x, v), the 
more ill-conditioned the problem, exactly as predicted by the theory. Another 
interesting point is that for the examples considered step function bases produce 
lower condition numbers than the polynomials. 

TABLE VI 

K=lx-ylD Collocation Step Functions 

20 
40 
60 
80 

100 

CW 

L 

* 8.8(6) 1.2(5) 7.7(4) 
* 7.6(7) Ll(6) 9.4(5) 
* 2.6(B) 3.9(6) 4.1(6) 
* 6.4(B) 9.7(6) 1.1(7) 
* 1.3(9) 2.0(7) 2.5(7) 

- 806NJ.‘0 7.8N’.‘O 1.02N’.” 

CNr, cpm CN3.1 cN'.~ 
y arbitrary 
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TABLE VII 

K = Ix --yID Galerkin Legendre Polynomials 

2 
4 
6 
8 

10 

CW 

1.0(O) 
** 
** 
** 
** 

1.0(O) 1.0(O) 
2.5(4) 2.4(2) 
1.4(5) 1.6(3) 
5.3(5) 6.2(3) 
1.6(6) 1.9(4) 

Not meaningful 

1.1(O) 
4.9( 1) 
5.0(2) 
2.3(3) 
8.3(3) 

L CNY, cN3.00’ CN’.’ cN’.j 
y arbitrary 

V. NUMERICAL RESULTS 

To demonstrate that the phenomena discussed in Section III do actually occur in 
practice, we examined the integral equation 

sinh (ax) ] + 2[ 1 - ePa cosh(ax)] 
I 

(5-l) 

TABLE VIII 

K = Ix -yl” Collocation Legendre Polynomials 

2.0 2.001 2.1 2.5 
N 

10 * 8.4(6) 9.6(4) 3.5(4) 
20 * 2.4( 10) 2.8(8) 1.3(8) 
30 * 4.3( 13) 5.3( 11) 2.6( 11) 
40 * * 8.3(14) 4.5(14) 
50 * * * * 

CW 

L Cnr/ 
y arbitrary 

Not meaningful 

cN’.ool cN’.’ CN’.T 
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TABLE IX 

K=(l -x)(1 +y).-1 <yQx< 1, 
=(I -y)(l +x),-l<x<y< 1, 

Step Functions 

N Galerkin N Collocation 

10 M(2) 20 4.0(2) 
20 6.0(2) 40 1.6(3) 
30 1.3(3) 60 3.6(3) 
40 2.4(3) 80 6.4(3) 
50 3.7(3) 100 1.0(4) 

cw 1.5N2.” l.ON’.’ 

L cNL.’ CN1.5 

for a = 0.001 and a = 10.0, using collocation and step functions. The vector 2 was 
first computed to machine accuracy (about 14 decimal digits) and $ was then 
calculated. The result was compared to the analytic solution 

f(y) = 4’ + 2.0, (5.2) 

and the average relative error 

N I&- (Yj+2)1 AVG=$ T 
,?I lJQ+21 

was found. 

TABLE X 

K=(l-x)(l+y),-l<y<x<l, 
=(l-y)(l+x),--I~x~Y~1, 

Legendre Polynomials 

N Galerkin N Collocation 

2 4.3(O) 10 3.1(3) 
4 3.8( 1) 20 5.6(6) 
6 1.3(2) 30 l.l(lO) 
8 3.5(2) 40 1.8(11) 

IO 7.6(2) 50 1.2(12) 

Not meaningful 

(5.3) 

L CN1.5 cN’.’ 
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TABLE XI 

Values of AVG for N = 100 

0 2.9(-5) 5.3(-5) 
1om6 7.4(-5) 5.6(O) 
lO-5 5.0(-4) 5.6(l) 
lO-J 4.9(-3) 5.6(2) 

Next, error was introduced into the data function g by calculating 

g&J = g(xJ( 1.0 + E Rand(i)), (5.4) 

where Rand(i) is a uniformly distributed random variable with value between -1.0 
and 1.0. The process described was repeated for various values of E. 

Table XI presents the values of AVG obtained for N= 100. The fact that AVG is 
relatively large, even for E = 0.0, is a bit surprising. An examination of the computed 
values of fi indicates, however, that most of that error occurs in the vicinity of 
x = f 1.0. In the interior of the interval, relative errors of the order of 10-r’ and less 
are found. This “end-point” effort becomes less and less significant as E is increased. 

It should be noted that the upper bound provided by Eq. (3.3) is remarkably good. 
For instance, with a = 10.0 and E = 10m4, we find AVG = 4.9 x 10m3 and cond(k) = 
2.0 x lo2 (Table II). Thus the left side of Eq. (3.5) is 4.9 X lop3 and the right is 
2.0 x 10m2. This same general behavior is exhibited by the other entries in Table XI 
provided E > 0. 

There is no assurance, of course, that such good agreement will be found in all 
problems. A wealth of interesting and valuable information has been revealed by 
extensive calculations of this kind, much of which cannot be presented here. It 
suggests strongly that the condition numbers are excellent indicators of “trends,” and 
that they can be useful in predicting when a solution scheme will be reasonably 
successful and when it will fail completely. 

Finally, it should be mentioned that often there is an optimal choice of N at which 
the most accurate solution is obtained when g contains error. This phenomenon has 
been observed in practice by many researchers, but seldom linked to matrix condition 
numbers. 

VI. SUMMARY AND CONCLUSIONS 

Two well-known methods for the numerical solution of integral equations of the 
first kind have been studied in a few reasonably representative cases. The condition 
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numbers of the related matrices have been estimated and compared with results 
provided by theory. Often these comparisons have been remarkably close. 

We have shown by several examples that condition numbers provide a good 
indication of the reliability of the solution in the presence of noisy data. Thus, these 
condition numbers can help to predict the success or failure of the method. 

There are, of course, many devices for the numerical solution of integral equations 
of the first kind (for example, see [4]). The technique of regularization is often used. 
In this article the order N serves as a regularization parameter. (For a more detailed 
discussion see [ 11. In [S ] a further regularization is carried out for the Galerkin 
method.) Each numerical algorithm has its advantages and its drawbacks. Often it is 
difficult to predict the success of a particular method. We believe the results of our 
investigation do provide, in some cases, such a priori information. 

We note, too, that in many instances very satisfactory results have been obtained 
by the use of step-function bases and that the computing time and effort involved is 
usually much less than for the Legendre polynomials. Extensive experience, not 
reported here, indicates that unless the anticipated shape of the solution function f 
strongly suggests a particular choice of basis, the simple step functions are often the 
best choice. 
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